dapatkan dollar gratis di sini

top banner ad

Monday, April 28, 2008

Computer power supply

A computer power supply unit (Computer PSU) is the component that supplies power to a computer. More specifically, a power supply is typically designed to convert 100-120 V (North America and Japan) or 220-240 V (Europe, Africa, Asia and Australia) AC power from the mains to usable low-voltage DC power for the internal components of the computer. Some power supplies have a switch to change between 230 V and 115 V. Other models have automatic sensors that switch input voltage automatically, or are able to accept any voltage between those limits.

The most common computer power supplies are built to conform with the ATX form factor. The most recent specification of the ATX standard is version 2.2, released in 2004. This enables different power supplies to be interchangeable with different components inside the computer. ATX power supplies also are designed to turn on and off using a signal from the motherboard (PS-ON wire, which can be shorted to ground to turn on the PSU outside the computer), and provide support for modern functions such as the standby mode available in many computers.

Power rating

Computer power supplies are rated based on their maximum output power. Typical power ranges are from 300 W to 500 W (lower than 300 W for Small form factor systems). Power supplies used by gamers and enthusiasts sometimes range from 500 W to 1000 W, with the highest end units going up to 2 kW for servers and extreme performance computers with multiple processors, several hard disks and multiple graphics cards (ATI CrossFire or NVIDIA SLI).

Using a power supply that is larger than necessary can significantly increase operating costs by wasting energy. Many overestimate the size of power supply that is needed; several of the online calculators overestimate as well. Typical desktop computers, even those with power hungry processors like the Prescott P4 or a hot GPU, use a maximum of 200 to 250 W or less at full load.

External

Most computer power supplies have the appearance of a square metal box, and have a large bundle of wires emerging from one end. Opposite the wire bundle is the back face of the power supply, with an air vent and C14 IEC connector to supply AC power. There may optionally be a power switch and/or a voltage selector switch. A label on one side of the box lists technical information about the power supply, including safety certifications maximum output wattage. Common certification marks for safety are the UL mark, GS mark, TÜV, NEMKO, SEMKO, DEMKO, FIMKO, CCC, CSA, VDE, GOST R and BSMI. Common certificate marks for EMI/RFI are the CE mark, FCC and C-tick. The CE mark is required for power supplies sold in Europe and India.

Dimensions of an ATX power supply are 150 mm width, 86 mm height, and typically 140 mm depth, although the depth can vary from brand to brand.

Connectors

Various connectors from a computer PSU.
Various connectors from a computer PSU.

Typically, power supplies have the following connectors:

  • PC Main power connector (usually called P1): Is the connector that goes to the motherboard to provide it with power. The connector has 20 or 24 pins. One of the pins belongs to the PS-ON wire mentioned above (it is usually green). This connector is the largest of all the connectors. In older AT power supplies, this connector was split in two: P8 and P9. If you have a power supply with 24-pin connector, you can plug it into a motherboard with a 20-pin connector. In cases where the motherboard has a 24-pin connector, some power supplies come with two connectors (one with 20-pin and other with 4-pin) which can be used together to form the 24-pin connector.
  • ATX12V 4-pin power connector (also called the P4 power connector). A second connector that goes to the motherboard (in addition to the main 24-pin connector). This connector is found on recent motherboards.
  • 4-pin Peripheral power connectors (usually called Molex for its manufacturer): These are the other, smaller connectors that go to the various disk drives of the computer. Most of them have four wires: two black, one red, and one yellow. Unlike the standard mains electrical wire color-coding, each black wire is a ground, the orange wire is +3.3 V, the red wire is +5 V, and the yellow wire is +12 V.
  • 4-pin Floppy drive power connectors (usually called Mini-connector): This is one of the smallest connectors that supplies the floppy drive with power. In some cases, it can be used as an auxiliary connector for AGP video cards. Its cable configuration is similar to the Peripheral connector.
  • Auxiliary power connectors: There are several types of auxiliary connectors designed to provide additional power if it is needed.
  • Serial ATA power connectors: a 15-pin connector for components which use SATA power plugs. This connector supplies power at three different voltages: +3.3, +5, and +12 volts.
  • Most modern computer power supplies include 6-pin connectors which are generally used for PCI Express graphics cards, but a newly introduced 8-pin connector should be seen on the latest model power supplies. Each PCI Express 6-pin connector can output a maximum of 75 W.
  • A C14 IEC connector with an appropriate C13 cord is used to attach the power supply to the local power grid.

nternal

Inside the computer power supply is a complex arrangement of electrical components, including diodes, capacitors, transistors and transformers. Also, most computer power supplies have metal heat sinks and fans to dissipate the heat produced. The speed of the fan is often dependent on the temperature, or less often the power load. It may be dangerous to open a power supply even if it is not connected to an electrical outlet, as high voltages may still be present in charged capacitors. However, for most PSUs this can be fixed by unplugging the PSU and then pressing the power-on button, which will drain the capacitors. Still, care should be taken as some PSUs require a load on the output in order to discharge the capacitors fully. Even when the PC is turned off, a PSU will draw some power from the electrical outlet, most of it going to power the +5 VSB (standby voltage) rail.

Some models even include heat pipes to assist in heat dissipation.

AT vs. ATX

A typical installation of an ATX form factor computer power supply.
A typical installation of an ATX form factor computer power supply.

There are two basic differences between old AT and newer ATX power supplies:

  • The PC main connectors (see above description of connectors).
  • The soft switch. On older AT power supplies, the Power-on switch wire from the front of the computer is connected directly to the power supply. On newer ATX power supplies, the switch goes to the motherboard, allowing other hardware or software to turn the system on or off.

Wiring diagrams

AT power connector (Used on older AT style mainboards)
Color Pin Signal

P8.1 Power Good

P8.2 +5 V

P8.3 +12 V

P8.4 −12 V

P8.5 Ground

P8.6 Ground


P9.1 Ground

P9.2 Ground

P9.3 −5 V

P9.4 +5 V

P9.5 +5 V

P9.6 +5 V
24-pin ATX power supply connector
(20-pin omits the last 4: 11, 12, 23 and 24)
Color Signal Pin Pin Signal Color

+3.3 V 1 13 +3.3 V sense

+3.3 V 2 14 −12 V

Ground 3 15 Ground

+5 V 4 16 Power on

Ground 5 17 Ground

+5 V 6 18 Ground

Ground 7 19 Ground

Power good 8 20 −5 V (optional)

+5 V standby 9 21 +5 V

+12 V 10 22 +5 V

+12 V 11 23 +5 V

+3.3 V 12 24 Ground

No comments: